Gauss-Legendre integration

Gauss-Legendre integration
квадратура Гаусса-Лежандра

Англо-русский словарь промышленной и научной лексики. 2014.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "Gauss-Legendre integration" в других словарях:

  • Integration by substitution — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • Méthodes de quadrature de Gauss — Dans le domaine mathématique de l analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d une intégrale. En général, on remplace le calcul de l intégrale par une somme pondérée prise en un certain nombre de… …   Wikipédia en Français

  • Methodes de quadrature de Gauss — Méthodes de quadrature de Gauss Dans le domaine mathématique de l analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d une intégrale. En général, on remplace le calcul de l intégrale par une somme… …   Wikipédia en Français

  • Méthode de quadrature de Gauss — Méthodes de quadrature de Gauss Dans le domaine mathématique de l analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d une intégrale. En général, on remplace le calcul de l intégrale par une somme… …   Wikipédia en Français

  • Méthodes De Quadrature De Gauss — Dans le domaine mathématique de l analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d une intégrale. En général, on remplace le calcul de l intégrale par une somme pondérée prise en un certain nombre de… …   Wikipédia en Français

  • Méthodes de quadrature de gauss — Dans le domaine mathématique de l analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d une intégrale. En général, on remplace le calcul de l intégrale par une somme pondérée prise en un certain nombre de… …   Wikipédia en Français

  • Polynôme de Legendre — Polynômes de Legendre Les polynômes de Legendre sont des solutions de l équation différentielle de Legendre, et constituent l exemple le plus simple d une suite de polynômes orthogonaux. Sommaire …   Wikipédia en Français

  • Carl-Friedrich Gauss — Carl Friedrich Gauß Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker …   Deutsch Wikipedia

  • Carl Friedrich Gauss — Carl Friedrich Gauß Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker …   Deutsch Wikipedia

  • Carl Gauss — Carl Friedrich Gauß Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker …   Deutsch Wikipedia

  • Calcul intégral — En mathématiques, plus précisément en analyse, le calcul intégral est l une des deux branches du calcul infinitésimal, l autre étant le calcul différentiel. Sommaire 1 Primitives 1.1 Ensemble des primitives d’une fonction sur un intervalle 2 …   Wikipédia en Français


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»